题目背景
B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。
题目描述
给出B地区的村庄数N,村庄编号从0到N-1,和所有M条公路的长度,公路是双向的。并给出第i个村庄重建完成的时间t[i],你可以认为是同时开始重建并在第t[i]天重建完成,并且在当天即可通车。若t[i]为0则说明地震未对此地区造成损坏,一开始就可以通车。之后有Q个询问(x, y, t),对于每个询问你要回答在第t天,从村庄x到村庄y的最短路径长度为多少。如果无法找到从x村庄到y村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄y在第t天仍未重建完成 ,则需要返回-1。
输入输出格式
输入格式:输入文件rebuild.in的第一行包含两个正整数N,M,表示了村庄的数目与公路的数量。
第二行包含N个非负整数t[0], t[1], …, t[N – 1],表示了每个村庄重建完成的时间,数据保证了t[0] ≤ t[1] ≤ … ≤ t[N – 1]。
接下来M行,每行3个非负整数i, j, w,w为不超过10000的正整数,表示了有一条连接村庄i与村庄j的道路,长度为w,保证i≠j,且对于任意一对村庄只会存在一条道路。
接下来一行也就是M+3行包含一个正整数Q,表示Q个询问。
接下来Q行,每行3个非负整数x, y, t,询问在第t天,从村庄x到村庄y的最短路径长度为多少,数据保证了t是不下降的。
输出格式:输出文件rebuild.out包含Q行,对每一个询问(x, y, t)输出对应的答案,即在第t天,从村庄x到村庄y的最短路径长度为多少。如果在第t天无法找到从x村庄到y村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄y在第t天仍未修复完成,则输出-1。
输入输出样例
4 51 2 3 40 2 12 3 13 1 22 1 40 3 542 0 20 1 20 1 30 1 4
-1-154
说明
对于30%的数据,有N≤50;
对于30%的数据,有t[i] = 0,其中有20%的数据有t[i] = 0且N>50;
对于50%的数据,有Q≤100;
对于100%的数据,有N≤200,M≤N*(N-1)/2,Q≤50000,所有输入数据涉及整数均不超过100000。
思路
Floyd
一开始先想的是SPFA;
1 #include2 #include 3 #include 4 using namespace std; 5 const int maxn=300; 6 const int maxm=2e5; 7 inline int max_(int x,int y){ return x>y?x:y;} 8 int n,m,q; 9 int a,b,c;10 int t[maxn];11 int h[maxn],hs=1,rs,p;12 int e_s[maxm],e_t[maxm],e_w[maxm],e_n[maxm];13 struct reserve{ int s,t,w,nt;}re[maxm];14 bool comp(const reserve&x,const reserve&y){ return x.nt tail){26 a=qe[tail++];27 for(int i=h[a];i;i=e_n[i])28 if(0ll+d[a]+e_w[i]
然后看了一下题解,突然意识到,这可能是Floyd的翻身仗。
代码实现
1 #include2 #include 3 const int maxn=2e2+10; 4 const int maxq=5e4+10; 5 int n,m,q,now; 6 int a,b,c; 7 int t[maxn]; 8 int d[maxn][maxn]; 9 int q_u[maxq],q_v[maxq],q_t[maxq];10 int main(){11 memset(d,0x7f,sizeof(d));12 scanf("%d%d",&n,&m);13 for(int i=0;i =t[k]||t[q_v[now]]>=t[k]||d[q_u[now]][q_v[now]]==d[n][n]) puts("-1");24 else printf("%d\n",d[q_u[now]][q_v[now]]); 25 now++;26 }27 for(int i=0;i